CHAPITRE 11: ARITHMETIQUE

Fiche d'activité 1 : division euclidienne, diviseur, ...

1. Plus grand diviseur commun à deux entiers :

a) Division euclidienne:

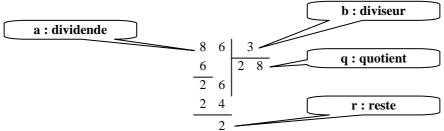
Définition:

Effectuer la division euclidienne de a par b, c'est trouver q et r tels que :

$a = b \times q + r$

« Dans a, il y a q fois le nombre b, et il reste r » (avec r < b)

A la main:



On peut écrire :

$$86 = 3 \times 28 + 2$$

Avec la calculatrice:

Pour trouver le reste de la division euclidienne de 86 par 3 :

- On calcule le quotient :

86 : $3 \approx 28,66666...$ donc **q = 28**. (c'est la partie entière)

- On calcule le reste :

 $86 - 3 \times 28 = 2$ donc le reste est $\mathbf{r} = 2$.

D'où: $86 = 3 \times 28 + 2$

b) Diviseurs d'un entier :

<u>Définition</u>:

b est un **diviseur** de a quand le reste de la division euclidienne de a par b est nul. (Autrement dit, le résultat de « a divisé par b » est un entier.)

Exemple:

Comme 12: 2 = 6; 12: 3 = 4; 12: 4 = 3; 12: 6 = 2 alors 2, 3, 4 et 6 sont des diviseurs de 12.

1 et 12 sont évidemment des diviseurs de 12.

Par contre, $12:7\approx1,714...$ donc 7 n'est pas un diviseur de 12.

c) Diviseurs communs:

1, 2, 3, 4, 6 et 12 sont les diviseurs de 12.

1, 2, 3, 6, 9 et 18 sont les diviseurs de 18.

Alors 1, 2, 3 et 6 sont les diviseurs communs à 12 et 18.

d) PGCD:

Définition :

Le **PGCD** de deux nombres est le plus grand diviseur commun à deux nombres entiers.

Exemple et notation:

1, 2, 3 et 6 sont les diviseurs communs à 12 et 18.

Le plus grand est 6 donc PGCD (12; 18) = 6

Fiche 1 : diviseur, diviseur commun, PGCD Fiche d'activité 2 : algorithme d'Euclide

2. Algorithme d'Euclide:

Algorithme pour calculer le PGCD de deux entiers :

Etape 1 : on divise le plus grand nombre par le plus petit

Etape 2: il y a 2 cas:

- Si le reste n'est pas nul :

On recommence l'étape 1 en prenant le diviseur et le reste de la division précédente.

– Si le reste est nul :

Le PGCD est le dernier reste non nul.

Exemple:

PGCD(37352; 5768)?

Etapes	a	b	reste	Calcul à faire
1	37352	5768	2744	$37352 = 5768 \times 6 + 2744$
2	5768	2744	280	$5768 = 2744 \times 2 + 280$
3	2744	280	224	$2744 = 280 \times 9 + 224$
4	280	224	56	$280 = 224 \times 1 + 56$
5	224	56	0	$224 = 56 \times 4 + 0 $ (le reste est nul)

Le dernier reste non nul est 56 donc PGCD(37352; 5768) = 56.

3. Fractions irréductibles :

a) Nombres premiers entre eux :

Définition :

On dit que deux nombres sont **premiers entre eux** quand leur unique diviseur commun est 1. C'est à dire que leur PGCD est 1.

Exemple:

15 a pour diviseurs : 1, 3, 5 et 15. 22 a pour diviseurs : 1, 2, 11 et 22.

L'unique diviseur commun à ces deux nombres est 1.

Ils sont donc premiers entre eux.

b) Fraction irréductible :

Propriété:

Une fraction est **irréductible** si son numérateur et son dénominateur sont premiers entre eux.

Exemples:

 $\frac{22}{15}$ est une fraction irréductible car PGCD(15; 22) = 1.

Par contre, $\frac{12}{18}$ est réductible. PGCD(12; 18) = 6.

Pour rendre cette fraction irréductible, on simplifie par le PGCD des deux nombres, qui est ici 6.

$$\frac{12}{18} = \frac{6 \times 2}{6 \times 3} = \frac{2}{3}$$

Fiche 2: nombres premiers entre eux, fractions irréductibles

Fiche 3: exercices type brevet