FICHE 3: RACINE CARREE (EQUATION DU TYPE « x²=a » ET CALCULS)

EXERCICE 1

Résoudre les équations :

Resourre les equations :				
a.	$x^2 = 5$ Cela signifie que	b.	$x^2 = 3$	
	$x = \sqrt{5} \text{ ou } x = -\sqrt{5}$			
	Les solutions sont $\sqrt{5}$ et $-\sqrt{5}$			
c.	x ² = 16	d.	$x^2 = 0$	
e.	$x^2 = 100$	f.	$x^2 = -2$	
g.	$2x^2 = 50$	h.	$x^2 - 17 = 19$	

EXERCICE 2

Résoudre les équations suivantes :

resource les equations survantes.				
a.	$x^2 - 2 = 3$	b.	$x^2 + 6 = 8$	
c.	$5 - x^2 = -2$	d.	$-13 - x^2 = 11$	
e.	$5x^2 = 15$	f.	$3x^2 = 12$	
g.	$17 - 7x^2 = 3$	h.	$6 + 2x^2 = 5$	
i.	$5x^2 + 7 = 2x^2 - 16$	j.	$x^2 - 14 = 5x^2 - 50$	

EXERCICE 3

Voici un programme de calculs :

- Choisir un nombre
- Mettre ce nombre au carré
- Ajouter le nombre choisi au départ au résultat précédent
- Soustraire au dernier résultat, la somme du nombre de départ et 168
- a) Utiliser le programme avec 15, -7, $\frac{3}{7}$ et $\sqrt{11}$.
- b) Existe-t-il un nombre pour lequel le programme de calculs donne 1 ? Si oui, combien y a-t-il de nombres pour lesquels le programme donne 1 ?

EXERCICE 4

Calculer sans la machine :

a)
$$\sqrt{2} \times \sqrt{50} =$$

b)
$$\sqrt{12} \times \sqrt{3} =$$

c)
$$\sqrt{2} \times \sqrt{10} \times \sqrt{500} =$$

d)
$$\sqrt{2} \times \sqrt{3} \times \sqrt{4} \times \sqrt{6} =$$

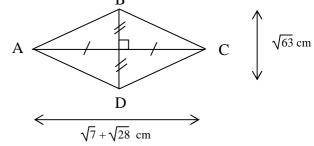
EXERCICE 5

Calculer sans la machine :

a)
$$\frac{\sqrt{18}}{\sqrt{2}} =$$

b)
$$\frac{\sqrt{12}}{\sqrt{27}} =$$

$$e) \frac{\sqrt{6} \times \sqrt{7}}{\sqrt{14} \times \sqrt{3}} =$$


$$\mathbf{d}) \frac{\sqrt{18} \times \sqrt{6}}{\sqrt{15} \times \sqrt{5}} =$$

EXERCICE 6

Un carré a pour côté $\sqrt{20}+1$ cm. Un rectangle a pour longueur $\sqrt{45}-1$ cm et largeur $\sqrt{5}+3$ cm. Quelle figure a le plus grand périmètre ?

EXERCICE 7

Quelle est la nature exacte de ABCD ? Justifier.

EXERCICE 8

Un carré ABCD a pour côté $\sqrt{8} + \sqrt{2}$ cm.

- a) Montrer que la longueur des diagonales de ce carré est un nombre entier.
- b) Montrer que l'aire de carré est un nombre entier.

EXERCICE 9

ABC est un triangle tel que :

$$AB = 4\sqrt{5}$$
, $AC = \sqrt{125}$ et $BC = \sqrt{45}$. (*unité* : *cm*)

- a) Quelle est la nature de ABC ?
- b) Calculer le périmètre de ABC et présenter la réponse sous la forme $a\sqrt{5}$ où a est un entier.
- c) Calculer l'aire de ABC.
- d) K est le centre du cercle circonscrit à ABC.

Calculer KB et donner la réponse sous la forme $\frac{a\sqrt{c}}{b}$ où a, b et c sont des nombres entiers.